
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 165-172 (1986) 

LOCAL PRESSURE OSCILLATION AND BOUNDARY 
TREATMENT FOR THE 8-NODE QUADRILATERAL 

G. F. CAREY AND R. McLAY 
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SUMMARY 

The 8-node (serendipity) velocity basis with Co bilinear pressure is a popular element but has been observed to 
yield poor pressures. We present some details of numerical experiments that indicate the local nature of the 
error and the effects of mesh refinement, increasing Reynolds number and regularity of the data. This leads to 
a strategy for appropriately modifying the data near the corners that is effective in improving the computed 
pressure approximation. 
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DISCUSSION 

The eight-node (serendipity) quadrilateral element is used extensively in finite element comput- 
ations since it offers the usual advantages of the 9-node (biquadratic) element, yet does not employ 
an internal node and associated degrees of freedom. We are specifically interested here in the use of 
this element for Co approximation of the velocity field, together with Co bilinear approximation of 
the pressures in a mixed finite element method for viscous flow computation. The observations 
apply equally, however, to the incompressible elasticity problem and possibly to other coupled 
systems of equations of similar structure. 

The pressures computed using the eight-node element have been observed in practice to be 
significantly poorer than those obtained with the 9-node element.'.' Our purpose here is to follow 
up this prior work and present some detailed numerical results indicating the behaviour of the 
solutions obtained with this element for the familiar driven cavity problem. The driven cavity is 
particularly interesting in the context of the present study since the corner singularities strongly 
influence the pressure field and amplify the effect of the element. We examine the behaviour of the 
pressure approximation with mesh refinement and also consider the approximation at higher 
Reynolds numbers. These results lead us to examine the effect of smoothing the data in a specific 
manner-namely, to satisfy the mass conservation condition at  the corners. 

NUMERICAL STUDIES AND ANALYSIS 

We consider the 'non-leaky' driven unit cavity and uniform meshes of 5 x 5, 10 x 10 and 20 x 20 
elements. Two variants of the standard approximation to the boundary conditions are first 
considered: (i) the lid velocity is taken to vary linearly from zero at the corners x = 0, x = 1 to unity 
on the interval 0.2 < x d 0.8 for all meshes, so that the same boundary-value problem is being 
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Figure 1. Pressure profiles at y = 04,O < x < 1 in the unit cavity for 8-node element and data type (i) on y = 1 (i.e. u = 1 for 
0.2 < x < 08, otherwise u linear). Results are for uniform meshes of 5 x 5 ,  10 x 10 and 20 x 20 elements 

solved in each case; (ii) the lid velocity changes linearly over the subintervals corresponding to the 
element sides adjacent to the corners x = 0 and x = 1. In this later case, the approximation to 
the ‘true’ discontinuity is closer as the mesh is refined. 

The pressure profiles* at Re = 10 along the section y = 0 8 , O  < x 6 1 are plotted in Figure 1 
for solutions on uniform (5  x 5), (10 x 10) and (20 x 20) grids using the 8-node element and the 
first variant of the boundary condition (‘fixed slope’). Pressure values on the coarsest mesh are 
very poor and oscillatory. Results using the 10 x 10 and 20 x 20 meshes are in good agreement 
throughout the interior but differ locally near the boundary where the oscillation is confined. 
Similar results are obtained with the second form of the boundary condition (‘varying slope’), 
the amplitude of the pressure error near the boundary being larger as one might anticipate 
(Figure 2). The profiles for the 8-node and 9-node elements are compared in Figure 3 for the 
(5 x 5) and (10 x 10) grids. The 9-node results do not exhibit this local oscillatory behaviour 
and are quite acceptable even on the coarse (5 x 5)  grid. The horizontal velocity component 
along this section is plotted in Figure 4. There is a slight oscillation in the velocity for the very 
coarse mesh, but these results are uniformly close. 

The effect of increasing the strength of the non-linearity was next considered. In Figure 5, we 
plot pressures at the same section for solutions obtained at Re = 800 using the 8-node element. 

*These results at very low Reynolds number were observed to be graphically indistinguishable from those for Stokes flow 
(Re  = 0.0) 
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Figure 2. Comparisonofpressure profilesat y = 04,O < x < 1 for 8-nodeelement and 20 x 20mesh using type(i)data(u = 1 
on 0.2 < x < 0.8, y = 1) and type (ii) data (u = 1 on 0.05 < x < 0.95) 
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Figure 3. Comparison of section pressures for 5 x 5 and 10 x 10 meshes using the 8-node and 9-node elements 
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Figure 4. Horizontal velocity profiles at x = 0.8 for 8-node element and 5 x 5, 10 x 10, 20 x 20 meshes 
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Figure 5. Pressure profilesalong y = 0.8 for flow at a higher Reynolds number, using the 8-nodeelement and uniform meshes 

of (5 x 5), (10 x 10) and (20 x 20) elements 



LOCAL PRESSURE OSCILLATION 169 

The coarse grid results are still inadequate, but the oscillations are not as pronounced as before. 
Results on the (10 x 10) and (20 x 20) grids are in good agreement and the boundary oscillation 
is no longer evident. Thus, the effect of the non-linear term is to mitigate the influence of the 
corner singularity. A similar behaviour was observed by Krishnan and Carey3 for the penalty 
method using the bilinear element. Note, however, that the pressure error in the penalty solution 
has a spurious ‘chequerboard’ component. Researchers have categorized such modes previously 
for elements with discontinuous pressure  base^.^-^ No such mode is present for the mixed 
method using the 8-node element.2 

It is instructive to examine the pressure values along a vertical side below the corner. For the 
(10 x 10) grid and R e =  10, with the first variant of the boundary condition (fixed slope), we 
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Figure 6. Smoothing boundary data (a) so that u‘ is zero at the corners in (b), and (c). 
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obtain the nodal values from top to bottom as - 7.92, 031  1, - 1.3233, 1.29, - 0.265, 0.0322, 
- 0.008096, 0.05, 0.028, 0.0216, 0.0. Note the sign change and pronounced oscillation near the 
top. We have found numerically that averaging the pressures at the element centroids provides 
a lower degree smoother projection. The pronounced local nature of the pressure oscillation 
suggests that the behaviour and explanation are different from that of elements previously 
analysed. We now offer an interpretation and modification which lead to improved results. 

Physically, the pressures may be viewed as acting to enforce mass conservation (V.u = 0). 
Hence, the loss of accuracy and presence of pronounced local oscillations reflect the inability 
of the approximation to satisfy mass conservation adequately. Even though the uelocity field in 
the approximation is continuous, the divergence of the uelocity has a strong discontinuity at the 
upper corners. Let us examine this observation in more detail. In the ‘non-leaky’ cavity models 
given earlier, the horizontal velocity of the lid is prescribed as varying linearly over a specified 
subinterval from zero at the upper corners to unity (Figure 6(a)). Now, on the vertical sides 
u = 0, so uy = 0 at the upper corners. However, since the lid velocity varies linearly near the 
corners u, = constant here and, hence, u, + uy # 0 at the corners. This error in the divergence 
expression in the element is accommodated by a corresponding local pressure error. There is a 
similar, but lesser, jump in u, at the interior node on the lid where u = 1 is attained. However, 
u,, is not specified here and, hence, the model can more reasonably approximate u, + uy = 0. 
Accordingly, the pressures are better behaved (e.g. see Figure 2). 

These observations suggest that we select the fit to the boundary data in a slightly different 
manner, projecting the data to match u, = 0 at the corners. To examine this, we consider two 
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Figure 7. Pressure profiles for the 8-node element with data smoothing described in Figure 6(b) for ‘varying slope’ boundary 
condition (ii) and 20 x 20 mesh (compared to case for Figure 6(a)) 
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Figure 8. Pressure profiles for the 8-node element with data smoothing described in Figure 6(c) for ‘Fixed slope’ boundary 
condition (i) and 20 x 20 mesh (compared to case for Figure 6(a) with u = 1 on 0 2  < x < 0.8) 

modifications of the corner data. The first case (Figure 6(b)) corresponds to selecting a quadratic 
approximation to the lid velocity through (0,O) (h/2, 1/4), (h, 1)  which implies that u, = 0 at the 
corner x = 0 as shown. In the second case (Figure 6(c)), the quadratic approximation is selected 
over two elements (fitting 0, 1/8, 1/2,7/8, 1 as shown) and u, = 0 is satisfied at x = 0 with u, con- 
tinuous on y = 1. The pressures for these two cases are shown in Figures 7 and 8, respectively. Note 
that in the calculations for Figure 8 the data for u(x )  on the lid increase from zero to unity over 
the interval 0 < x < 0.2 (4 elements) whereas in Figure 7 the increase occurs across a single element 
(0 < x < 0.05). This choice of data corresponds to that considered previously in the comparison 
of Figure 2. Clearly, the effect of regularizing the data is very pronounced, and the local pressure 
oscillations for the eight-node element are now almost absent. For comparison purposes, we 
also computed the solution using a quadratic approximation to u with u, = 0 at x = h where 
one fits (0,O) (h/2, 0.75) and (h, 1). The value of u, at the corner is larger even than that in the 
previous linear cases, and the oscillations in computed pressure are worse, a result consistent 
with the present interpretation. For brevity, detailed numerical comparison results are not given 
here but are included in a r e p ~ r t . ~  

CONCLUDING REMARKS 

There is also a slight improvement in the quality of the pressures obtained with the 9-node 
element when the smoothed boundary data are used. However, the additional internal degree 
of freedom in the 9-node element suffices to allow adequate approximation of u, + u,, = 0 near 
the corners even for the linear fit to data. Recalling that the 8-node ‘serendipity’ element is 
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obtained by constraining the midside basis functions to vary linearly rather than quadratically 
in the direction normal to the side, derivatives will be less well approximated and the inadequacy 
in treating the corner error in V.u  more pronounced. 

Although it has little bearing on the present study of the 8-node element, for completeness 
and to satisfy our curiosity, we also computed the solution to the cavity problem using a penalty 
formulation with the 9-node element and 2 x 2 Gauss integration of the penalty term. This 
element is known to produce a superimposed chequerboard type pressure oscillation mode at 
the element Gauss points. We found, not surprisingly, that the pressure oscillation is still present 
when the ‘smoothed’ boundary data are used, but the amplitude of the oscillatory mode is much 
smaller. In effect, the error in V . u  is smaller and, hence, there is less error projected into the 
spurious mode. This is also consistent with earlier observations that, if the data and solution 
are sufficiently well behaved, the spurious mode component may be negligible.5 

In concluding, our approach of appropriately smoothing the data (by setting u, = 0) is simple 
and effective in mitigating local pressure errors for the 8-node element and provides guidelines 
for projecting the boundary data, under which this element can be better used. 
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